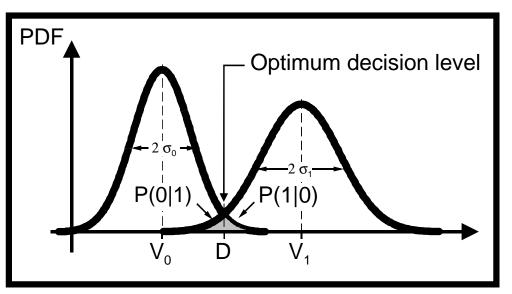
Digital optical communications

- Performance metrics
 - The bit error rate
 - The eye-diagram
 - The L×B figure of merit
- Transmission impairments
 - Attenuation & noise
 - ISI, bandwidth and dispersion
 - Jitter
- Fundamental limits:
 - Quantum limit
 - Dispersion limit
- Capacity
 - First-generation: 850 nm
 - Second-generation: 1300 nm
 - Third-generation: 1550 nm

Aussois, 26 November 1998

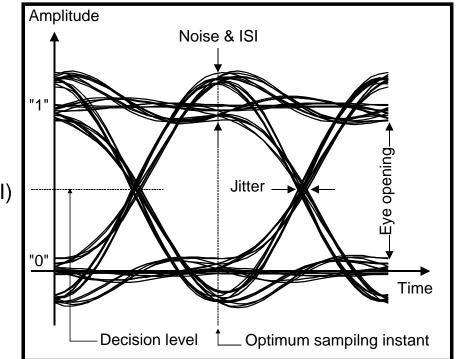
- The Bit Error Rate (BER):
- The primary measure of performance of a digital system
- The probability that an error will be made in the detection of a received bit
 - BER < 10⁻⁹, for telecommunications
 - BER < 10^{-12} , for data transmission
- Measured by counting the number of errors occurring during transmission over a long period of time:
 - BER = (# bit errors)/(total # of bits transmitted)

The Bit Error Rate (BER):


- BER = P_{err} (Probability of Error)

$$P_{err} = P(0|1)P(1) + P(1|0)P(0)$$

$$P(0|1) = \frac{1}{\sqrt{2\pi}} \frac{e^{-SNR^{-2}}}{SNR^{-1}}, P(1|0) = \frac{1}{\sqrt{2\pi}} \frac{e^{-SNR^{-2}}}{SNR^{-0}}$$


$$SNR_{-1} = \frac{V_{1} - D}{\sigma_{1}}, SNR_{-0} = \frac{D - V_{0}}{\sigma_{0}}$$

- BER is a strong function of SNR_i:
 - BER(SNR = 6) = 10⁻⁹
 - BER(SNR = 7.9) = 10⁻¹⁵

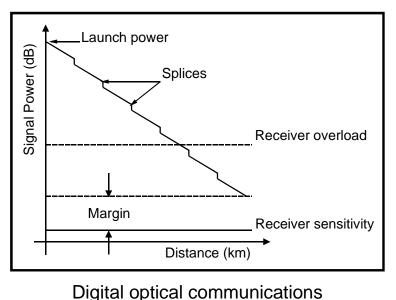
The Eye-Diagram:

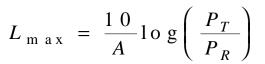
- It is the overlay of all possible states of a sequence
- Powerful diagnostic:
 - Jitter
 - Noise
 - Inter-Symbol Interference (ISI)
 - Patterning effects
 - Bit errors

Bit Rate-Distance Product:

- To compare different systems a figure of merit is necessary
- The product:

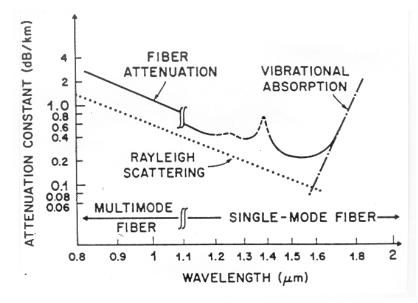
(Bit Rate) × (Distance), is a measure of the information carrying capacity of a link


- "Distance":
 - is the maximum distance that can be achieved without the use of repeaters between the transmitter and the receiver
- Optimize a link capacity \Leftrightarrow increase B × L

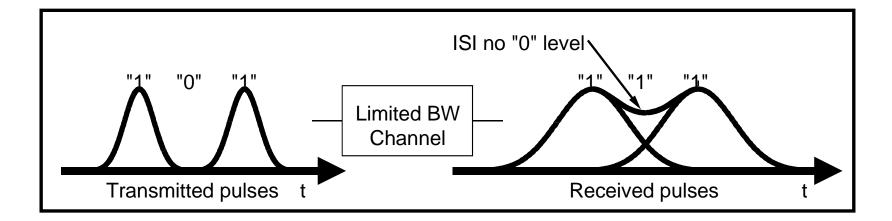

Attenuation & Noise:

• As a signal travels along a fiber (or cable) it is attenuated:

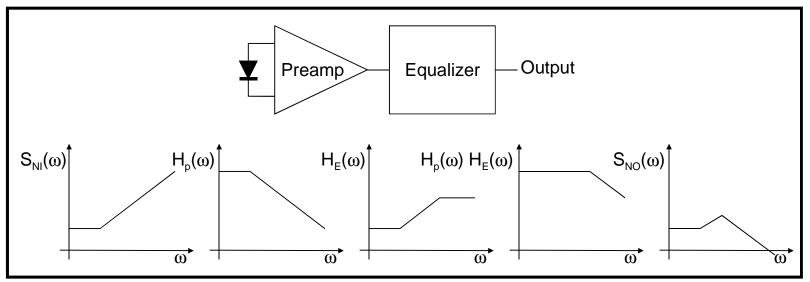
$$P(L) = P_T \cdot 10^{-\frac{A \cdot L}{10}}$$


- Due to receiver noise, a minimum power has to be detected by the receiver in order to achieve the desired BER
- The maximum distance over which a signal can travel before it is to week to be detected is: $10 (P_{\pi})$

fiber attenuation

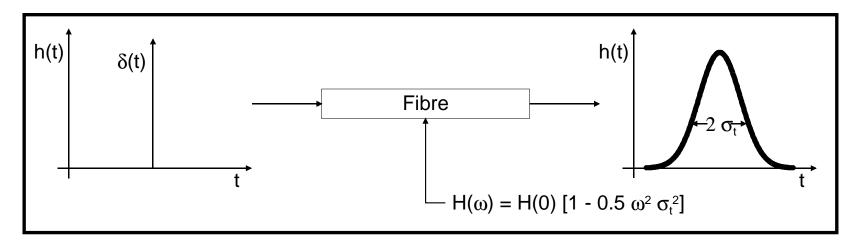

- Attenuation in optical fibers is caused by:
 - Rayleigh scattering: dominant at the "shorter" wavelengths (<1600nm): $A \sim 0.6 / \lambda^4 dB/km$
 - Silica vibrational absorption: dominant at "longer" wavelengths (>1600nm)
 - Both phenomena combine to produce a low-loss "window" with absolute loss minimum at 1550nm
 - Absorption peak caused by OH ions (~1400nm)

Aussois, 26 November 1998


ISI, Dispersion and Bandwidth

- In a physical link, the available bandwidth is limited
- As the symbol rate approaches the bandwidth limit the received pulses become broadened versions of the transmitted pulses
- For moderate to sever bandwidth limitations the received pulses start to overlap
- This overlap is called Intersymbol Interference (ISI)
- Bandwidth limitations and fiber dispersion are the common causes of ISI
- Large amounts of ISI can not be simply corrected by increasing the received signal power

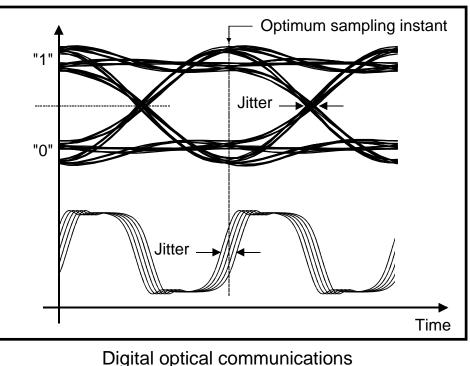
Bandwidth:


- Electronic circuits have finite bandwidths
- Bandwidth limitations can be equalized
- Equalization increases the receiver high frequency noise
 - This increases the BER
 - The BER can be restored by increasing the received signal power
 - The increase in power necessary to restore the BER is called the <u>Power</u>
 <u>Penalty</u>

Aussois, 26 November 1998

Dispersion:

- As signal pulses travel along a fiber they spread and start to overlap
- Dispersion effects result in: reduction of the high frequency response of the system
- Small amounts of dispersion can be corrected by equalization
- Equalization has an associated power penalty
- Systems operate typically with dispersion penalties less than 1dB
- To maintain the dispersion penalty less than 1dB the RMS pulse spread has to be less than one-quarter of T: $\sigma_t < T/4$



Dispersion:

- Since, σ_t increases with fiber length
- And, a power penalty less that 1 dB requires $\sigma_t < T/4$
- The maximum fiber length that satisfies $\sigma_t < T/4$ is called the *dispersion-limited transmission distance*
- Dispersion-limited transmission depends on:
 - The fiber length
 - The bit rate
 - The fiber material characteristics
 - The fiber waveguide structure
 - It is independent of fiber loss

<u>Jitter:</u>

- In a band limited system phase noise (jitter) leads to a degradation of the SNR.
- Since the BER is a strong function of the SNR jitter can lead to a quick degradation of the BER
- The effects of excessive amounts of jitter <u>can not</u> be corrected by increasing the signal power

Fundamental Limits

<u>Quantum Limit:</u>

- The quantum noise limit is obtained when all the system noise contributions are reduced to zero.
- In this case the detection of a single electron is sufficient to identify a transmitted "1"
- However, light detection is a statistical process it self. There is a finite probability that a given amount of power will generate zero electrons
- To reduce this probability to 10⁻⁹ the received mean power has to be bigger than:

$$\langle P \rangle \geq 1 \ 0 \ \cdot h \ v \ \cdot B$$

- The quantum limit is thus proportional to:
 - The photon energy (hv)
 - The bit rate (B)

Ex. For a 10Gbits/s transmission system operating at 1550nn the quantum limit is: -48.9dBm

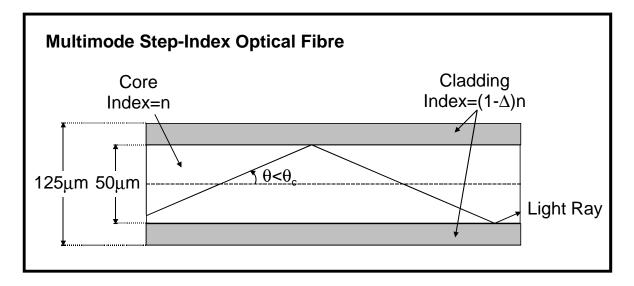
Fundamental Limits

Dispersion Limit

- Optical dispersion is proportional to the transmitted spectral width
- If the light source spectral width was reduced to zero the transmitted signal would still have a finite spectral width due to the signal bandwidth:

$$\sigma_{\lambda} \cong \frac{\lambda^2}{c} \frac{B}{2}$$

• That sets the ultimate dispersion limit to the fiber length:


$$L \leq \frac{c}{2 D \lambda^2} \frac{1}{B^2}$$

Ex. For a 10 Gbit/s transmission system operating at 1550 nm with D = 15 ps/nm/km the dispersion limit constrains the fiber length to less than 40 km

- Wavelength: $\lambda = 850$ nm
- Fiber: <u>multimode</u>, step-index and graded-index
- Light sources: GaAs/AlGaAs lasers and LED's
- Detectors: Si PIN's and APD's
- <u>Loss limit:</u>
 - Receiver sensitivity: for a typical Si APD based receiver about 300 photons/bit are necessary to achieve a BER of 10-9

$$P_R = -131.6 + 10\log(B)$$
 (in dBm)

Ex. For a 100 Mbit/s system operating at λ = 850 nm with A = 2.5 dB/km, P_T = 1 mW and P_R = -51.6 dBm the loss limited transmission distance is L_{max} = 20.6 km

Multimode Step-Index fiber:

- Composed of:
 - A core, having index of refraction *n*
 - A cladding, having a lower index $(1-\Delta)n$
- The index step acts to confine the optical energy in the fiber core:
 - "Light rays" with $\theta \leq \sqrt{2 \Delta}$ are confined to the core by total internal reflection
 - "Rays" at larger angles are partially reflected and rapidly attenuated

Aussois, 26 November 1998

Dispersion limit:

- Modal dispersion is the dominant dispersive mechanism:
 - Rays propagating at different angles have different flight times

$$\tau = \frac{L n}{c \cos(\theta)}$$
, for $0 \le \theta \le \sqrt{2 \Delta}$

- The pulse spread after fiber length L is

$$\sigma_t = \frac{L n}{2 c} \Delta$$

- Dispersion-limited transmission distance:
$$L_{m a x} = \frac{c}{2 n \Delta} \frac{1}{B}$$

Ex. For a 100 Mbit/s system operating at $\lambda = 850$ nm using multimode step-index fiber with n = 1.46 and $\Delta = 0.01$ the dispersion limited distance is 0.1km

Multimode Graded-Index fiber:

- Similar structure to step-index fiber <u>but</u> the core refractive index has a parabolic profile: high in the center and gradually decreasing towards the cladding:
 - light rays staying close to the core center travel relatively slow ("high n")
 - light rays making wide excursions towards the cladding travel relatively faster
 - Control of the index profile allows to make the travel times for all rays to be nearly equal

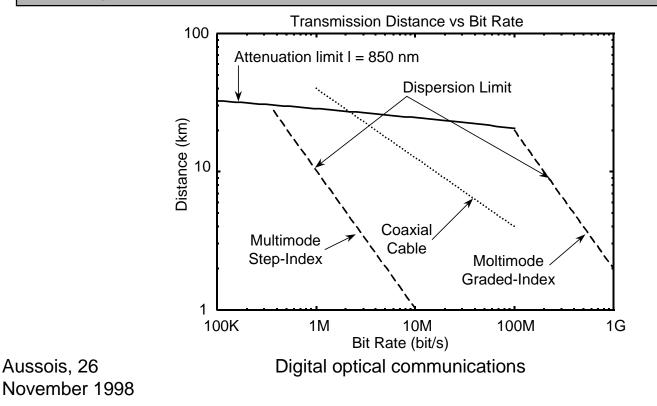
Dispersion limit:

- The pulse spread after the distance L is

$$\sigma_t = \frac{L n}{8 c} \Delta^2$$

$$L_{\text{max}} = \frac{2 c}{n \Delta^2} \frac{1}{B}$$

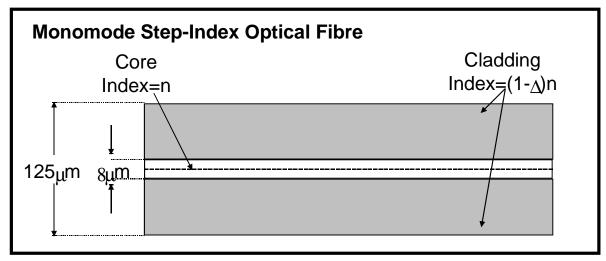
Aussois, 26 November 1998


Ex. For a 100 Mbit/s system operating at λ = 850 nm using multimode gradedindex fiber with n = 1.46 and $\Delta = 0.014$ the dispersion limited distance is 20 km

First-generation system: B = 100Mbit/s

L_{max}(attenuation) = 20.6 km

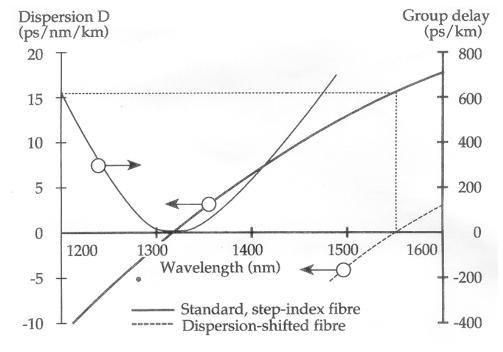
Aussois, 26


- L_{max}(dispersion) = 0.1 km (step-index)
- L_{max}(dispersion) = 20.9 km (graded-index)

- Wavelength: $\lambda = 1300$ nm
- Fiber: single-mode step-index
- Light sources: InGaAs/InP Lasers
- Detectors: InGaAs/InP PIN's and Ge APD's
- Loss limit:
 - Receiver sensitivity: about 1000 photons/bit are necessary to achieve a BER of 10⁻⁹ for an InGaAsP/InP APD based receiver

$$P_R = -128.2 + 10 \log(B)$$
 (in dBm)

Ex. For a 10 Gbit/s system operating at λ = 1300 nm with A = 0.4 dB/km, P_T = 1 mW and P_R = -28.2 dBm the loss limited transmission distance is L_{max} = 70.4 km

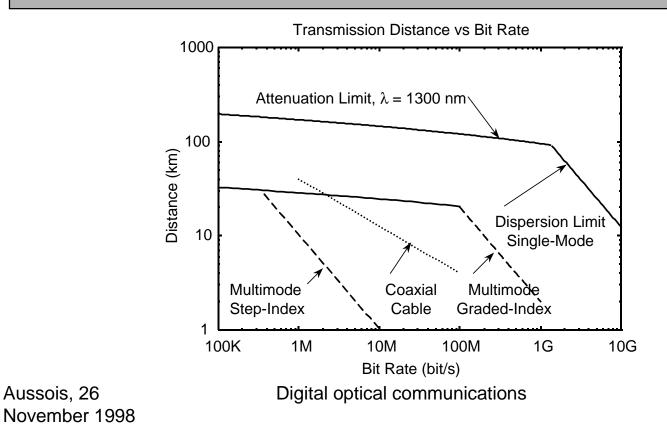


Monomode Step-Index fiber:

- Composed of:
 - A core, having index of refraction n
 - A cladding, having a lower index $(1-\Delta)n$
 - <u>Core size: monomode << multimode</u>
- A monomode fiber supports a single wave mode
- Consequently, *there is no modal dispersion*
- But there is: *material dispersion*

Dispersion limit:

- Due to *material dispersion*
 - The group velocity of a propagating mode is a function of the wave length
 - The index of refraction of silica is a function of the wavelength
- The RMS pulse spreading is given by: $\sigma_t = D \cdot L \cdot \sigma_\lambda$
- Material dispersion goes through an minimum at λ = 1300 nm

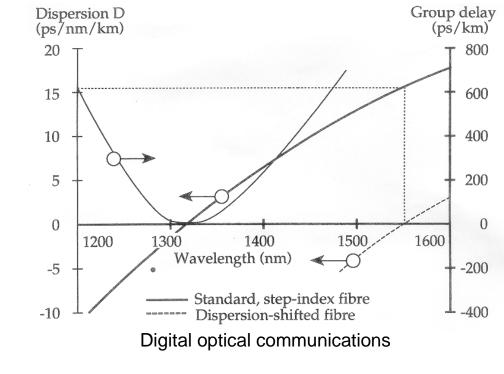


Aussois, 26 November 1998

Dispersion limit: (material dispersion)

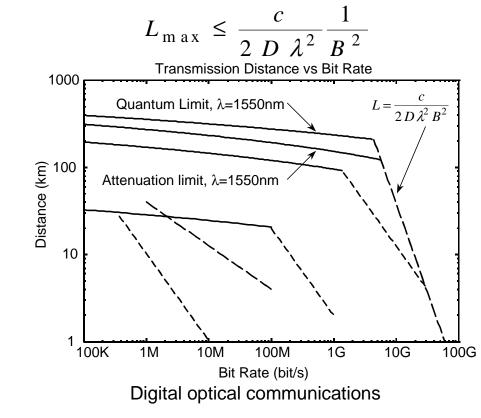
• The dispersion limited transmission distance is given by: $L_{\text{max}} = \frac{1}{4 \cdot D \cdot \sigma_2 \cdot B}$

Ex. For a 10 Gbit/s system with an InGaAsP laser with center wavelength $\lambda = 1300$ nm (10 nm tolerance), D is around 1 ps/nm/km. For a typical spectral with of 1nm the loss limited transmission distance is L_{max} = 25 km


- Wavelength: $\lambda = 1550$ nm
- Fiber: single-mode and dispersion-shifted
- Light sources: GalnAsP/InP DFB Lasers
- External Modulators: MZ and EA
- Optical amplifiers: SLA's and EDFA's
- Detectors: InGaAsP/InP PIN's
- Loss limit:
 - Receiver sensitivity: similar to that of the second generation systems (same materials)

$$P_R = -128.2 + 10\log(B)$$
 (in dBm)

Ex. For a 10 Gbit/s system operating at λ = 1550 nm with A = 0.25 dB/km, P_T = 1 mW and P_R = -28.2 dBm the loss limited transmission distance is L_{max} = 112.8 km


Dispersion limit:

- Dispersion shifted fiber
 - Standard fiber has D = 15-17 ps/nm/km dispersion at λ = 1550 nm
 - Wave guide dispersion has opposite sign to material dispersion at $\lambda = 1550$ nm
 - By fiber design material and waveguide dispersion can be made to cancel each other
 - This results in minimum attenuation and dispersion at $\lambda = 1550$ nm

Dispersion limit:

- Reducing the light source spectral width reduces the effects of dispersion
 - Narrow spectral width lasers DFB's
 - External modulators: MZ and EA
- Dispersion limit: $L_{\max} = \frac{1}{4 \cdot D \cdot \sigma_{\lambda} \cdot B}$
- For small values of D and extremely narrow spectral width:

Aussois, 26 November 1998